Abstract
We study assortment optimization problems where customer choices are governed by the nested logit model and there are constraints on the set of products offered in each nest. Under the nested logit model, the products are organized in nests. Each product in each nest has a fixed revenue associated with it. The goal is to find a feasible set of products, i.e., a feasible assortment, to maximize the expected revenue per customer. We consider cardinality and space constraints on the offered assortment, which limit the number of products and the total space consumption of the products offered in each nest, respectively. We show that the optimal assortment under cardinality constraints can be obtained efficiently by solving a linear program. The assortment optimization problem under space constraints is NP-hard. We show how to obtain an assortment with a performance guarantee of 2 under space constraints. This assortment also provides a performance guarantee of 1/(1-ϵ) when the space requirement of each product is at most a fraction ϵ of the space availability in each nest. Building on our results for constrained assortment optimization, we show that we can efficiently solve joint assortment optimization and pricing problems under the nested logit model, where we choose the assortment of products to offer to customers, as well as the prices of the offered products. Data, as supplemental material, are available at http://dx.doi.org/10.1287/mnsc.2014.1931 . This paper was accepted by Dimitris Bertsimas, optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.