Abstract
An adaptive neural control scheme without backstepping is proposed for the air-breathing hypersonic vehicle subject to input constraints. To estimate the unknown nonlinearity of velocity subsystem and altitude subsystem, two radial basis function neural networks (RBFNNs) are constructed. Since the complex backstepping design steps are not needed, the proposed control structure is quite concise and the problem of “explosion of terms” is avoided. Moreover, a novel nonlinear auxiliary system is constructed to solve the problem of input constraints. The advantage of the proposed auxiliary system is that its high-order form has good performance and the parameter tuning is relatively easy. Simulation results show that the designed controllers achieve stable tracking of reference commands with good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.