Abstract

Avian influenza viruses, including H5N1 and H7N9, have been associated with severe respiratory disease and fatal outcomes in humans. Although acute respiratory distress syndrome (ARDS) and progressive pulmonary endothelial damage are known to be present during severe human infections, the role of pulmonary endothelial cells in the pathogenesis of avian influenza virus infections is largely unknown. By comparing human seasonal influenza strains to avian influenza viruses, we provide greater insight into the interaction of influenza virus with human pulmonary endothelial cells. We show that human influenza virus infection is blocked during the early stages of virus entry, which is likely due to the relatively high expression of the host antiviral factors IFITMs (interferon-induced transmembrane proteins) located in membrane-bound compartments inside cells. Overall, this study provides a mechanism by which human endothelial cells limit replication of human influenza virus strains, whereas avian influenza viruses overcome these restriction factors in this cell type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call