Abstract

Members of the G-protein-coupled receptor superfamily (GPCRs) undergo homo- and/or hetero-oligomerization to induce cell signaling. Although some of these show constitutive activation, it is not clear how such GPCRs undergo homo-oligomerization with transmembrane helix movement. We previously reported that angiotensin II (Ang II) type 2 (AT(2)) receptor, a GPCR, showed constitutive activation and induced apoptosis independent of its ligand, Ang II. In the present study, we analyzed the translocation and oligomerization of the AT(2) receptor with transmembrane movement when the receptor induces cell signaling. Constitutively active homo-oligomerization, which was due to disulfide bonding between Cys(35) in one AT(2) receptor and Cys(290) in another AT(2) receptor, was localized in the cell membrane without Ang II stimulation and induced apoptosis without changes in receptor conformation. These results provide the direct evidence that the constitutively active homo-oligomeric GPCRs by intermolecular interaction in two extracellular loops is translocated to the cell membrane and induces cell signaling independent of receptor conformation and ligand stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.