Abstract

The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the basic helix-loop-helix-PER-ARNT-SIM superfamily. Xenobiotics, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, bind the receptor and trigger diverse biological reactions. Thymocyte development and T cell-dependent immune reactions are sensitive targets of AhR-dependent 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity. However, the exact role of the AhR in T cells in animals exposed to exogenous ligands has not been clarified because indirect effects of activated AhR in other cell types cannot be excluded. In this study, we generated transgenic (Tg) mice expressing a constitutively active mutant of AhR under the regulation of a T cell-specific CD2 promoter to examine AhR function in T cells. The mRNAs of the constitutively active mutant of AhR and an AhR-induced gene, CYP1A1, were expressed in the thymus and spleen of the Tg mice. The transgene expression was clearly detected in the thymocytes, CD4, and CD8 T cells, but not in the B cells or thymus stromal cells. These Tg mice had a decreased number of thymocytes and an increased percentage of CD8 single-positive thymocytes, but their splenocytes were much less affected. By contrast, the increase in number of T cells and B cells taking place in the spleen after immunization was significantly suppressed in the Tg mice. These results clearly show that AhR activation in the T-lineage cells is directly involved in thymocyte loss and skewed differentiation. They also indicate that AhR activation in T cells and not in B cells suppresses the immunization-induced increase in both T cells and B cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.