Abstract
The differentiation of germ cells into oogonia or spermatogonia is the first step that eventually gives rise to fully mature gametes. In the female fetal gonad, the RSPO1/WNT/CTNNB1 signalling pathway is involved in primordial germ cell proliferation and differentiation into female germ cells, which are able to enter meiosis. In the postnatal testis, the WNT/CTNNB1 pathway also mediates proliferation of spermatogonial stem cells and progenitor cells. Here we show that forced activation of the WNT/CTNNB1 pathway in fetal gonocytes using transgenic mice leads to deregulated spermatogonial proliferation, and exhaustion of the spermatocytes by apoptosis, resulting in a hypoplastic testis. These findings demonstrate that a finely tuned timing in WNT/CTNNB1 signalling activity is required for spermatogenesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.