Abstract

The inelastic behaviour of thermoplastic polymers below the glass transition temperature can involve shear plasticity or crazing, depending on the strain rate and temperature. Shear plasticity is driven by local shear stresses and is essentially volume preserving. In contrast, crazing is a failure phenomenon occurring under tension and causes significant volume change. In some cases, crazing can also result in large inelastic deformations at macroscopic scale, referred to as craze yielding. The aim of this study is to propose a thermodynamically-consistent constitutive framework that accounts for both shear plasticity and craze yielding in glassy polymers. The main assumption is that shear plasticity and craze yielding occur exclusively from each other, depending on the local stress state. Both are modelled as thermally-activated processes with different activation stresses and flow rules. The theory is validated against experimental data for polylactic acid (PLA). Our model is capable of reproducing the stress–strain response including yielding, softening, and drawing under both shear plasticity and craze yielding, and also accurately predicts the volumetric deformation under tension. In particular, our simulations well capture the interesting phenomenon that craze yielding stabilises localised deformations and prevents necking. Our model can also simulate complex scenarios where both mechanisms occur simultaneously at different locations of the specimen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.