Abstract
In this paper, a simple phenomenological model describing the macroscopic mechanical response of electrospun nanofibrous structures is proposed. Motivated by the experimental observation, the model development starts from the description of membrane response at fiber scale in order to capture individual fiber response and irreversible inter-fiber interactions using hyperelastic and large strain elasto-plastic frameworks, respectively. The macroscopic response is subsequently obtained by integrating the fiber responses in all possible fiber orientations. The efficiency of the proposed model is assessed using experimental data of PVDF electrospun nanofibrous membranes. It is found that the model is qualitatively in good agreement with uniaxial monotonic and cyclic tensile loading tests. Two other deformation modes, i.e., equibiaxial extension and pure shear (planar extension), are simulated to further evaluate the model responses. Finally, the deformation-induced fiber re-orientation is investigated for different modes of deformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.