Abstract

Characterization of mechanical behavior of materials and interfaces and joints (contacts), called constitutive modeling, is vital for realistic and economic solutions of geotechnical problems by using conventional and advanced computer methods. Since the latter allows complex factors that influence the material behavior, development and use of general and unified constitutive models that allow for such factors assume enhanced importance. This paper presents a brief review of available constitutive models and their limitations, and introduces and provides details of a unified and powerful modeling approach called the disturbed state concept (DSC) that can be used for a wide range of geologic, concrete, asphaltic, metallic, solders and polymeric materials, and contacts. The DSC with the hierarchical single surface (HISS) plasticity model has been used successfully for a wide range of geologic materials and contacts, and for prediction of measured behavior for many boundary value problems. Typical examples for validation of the behavior geologic martials and contacts, and of a boundary value problem are presented in the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call