Abstract

We present a reformulation of the 'reactive rod model' (RRM) of Dutta and Graham [Dutta, Sarit and Graham, Michael D., JNNFM 251 (2018)], a constitutive model for describing the behavior of dilute wormlike micelle solutions. The RRM treats wormlike micelle solutions as dilute suspensions of rigid Brownian rods undergoing reversible scission and growth in flow. Evolution equations for micelle orientation and stress contribution are coupled to a kinetic reaction equation for a collective micelle length, producing dynamic variations in the length and rotational diffusivity of the rods. This model has previously shown success in capturing many critical steady-state rheological features of dilute wormlike micelle solutions, particularly shear-thickening and -thinning, non-zero normal stress differences, and a reentrant shear stress-shear rate curve, and could fit a variety of steady state experimental data. The present work improves on this framework, which showed difficulty in capturing transient dynamics and high-shear behavior, by reformulating the kinetic equation for micelle growth on a more microstructural (though still highly idealized) basis. In particular, we allow for micelle growth associated with strong alignment of rods and breakage due to tensile stresses along the micelles. This new formulation captures both steady and transient shear rheology in good agreement with experiments. We also find good agreement with available steady state extensional rheology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.