Abstract

The cornea, the transparent tissue in the front of the eye, along with the sclera, plays a vital role in protecting the inner structures of the eyeball. The precise shape and mechanical strength of this tissue are mostly determined by the unique microstructure of its extracellular matrix. A clear picture of the 3D arrangement of collagen fibrils within the corneal extracellular matrix has recently been obtained from the secondary harmonic generation images. However, this important information about the through-thickness distribution of collagen fibrils was seldom taken into account in the constitutive modeling of the corneal behavior. This work creates a generalized structure tensor (GST) model to investigate the mechanical influence of collagen fibril through-thickness distribution. It then uses numerical simulations of the corneal mechanical response in inflation experiments to assess the efficacy of the proposed model. A parametric study is also done to investigate the influence of model parameters on numerical predictions. Finally, a brief comparison between the performance of this new constitutive model and a recent angular integration (AI) model from the literature is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.