Abstract

The constitutive relationship can effectively describe and predict the deformation behavior of materials, and it is critical to establish appropriate constitutive relationships to obtain the mechanical response of gradient nanostructured (GNS) metallic materials during deformation. In this work, a general method for establishing the multi-layer constitutive relationship of the GNS metallic materials was proposed. A fully austenitic 310S stainless steel specimen with a thickness of 1.4 mm was fabricated by surface mechanical rolling treatment (SMRT) technology, and its depth-dependent microstructures and macroscopic mechanical properties were experimentally investigated. Based on the experimental results of uniaxial tensile and microhardness, using the quantitative relationship between microhardness and flow stress, the reverse analysis was conducted using a separation parameter method to establish the constitutive relationship of the 28 thin shells of the GNS310S specimen. Finite element analysis (FEA) confirmed that GNS310S was in a multiaxial stress state at low strains, and the evolution of stress and strain gradients during non-uniform deformation was analyzed. The method for establishing the constitutive relationship is independent of the microstructure and synergistic strengthening factors, and the experiment performs conveniently and has great generalizability, which can provide a useful guide for the mechanical modeling of the GNS metallic materials to obtain the intrinsic mechanical response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call