Abstract

A mathematical model of high-damping rubber materials is developed. First the material experiments necessary for modeling are systematically conducted. Then, on the basis of the results of the material experiments, a constitutive model for rubber materials is proposed. The model is decomposed into two parts. The first part consists of an elastoplastic body with a strain-dependent isotropic hardening law and it represents the energy dissipation of the material, while the second part consists of a hyperelastic body with a damage model and it expresses the evolutional direction of the stress tensor. By comparing the experimental results with the simulation by the model, the model is found to well approximate the behaviors of high-damping rubber materials. Finally, a hybrid analysis method is proposed. In this method, the strain field of laminated rubber bearings measured by image processing is combined with the numerical analysis to confirm the applicability of the proposed model to the bearing. In addition, by this hybrid analysis method, the bulk modulus of rubber material is also computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.