Abstract

A fundamental understanding of fiber-reinforced polymer (FRP) laminate bonding behavior, including bond strength and effective bonding length, is of primary importance for the development of design guidelines and codes for concrete structures strengthened with externally bonded FRP reinforcement as a bond-critical application. However, the long-term serviceability of such FRP-strengthened structures is still a concern due to a lack of both long-term performance data and a suitable model to represent these performances. This study aims at presenting a viscoelastic model describing the time-dependent behavior of the FRP–concrete interface. The proposed model has been calibrated using strain measurements of the designed specimen for the experimental investigation of the time-dependent behavior of the FRP–concrete interface, including the development of the effective bonding length. Afterward, the proposed model satisfactorily predicts the time-dependent bonding length of the FRP sheet in comparison with the ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call