Abstract

A great number of biological structures are composed of fibers (elastin, collagen, etc.) dispersed on an aqueous matrix in such a complex way that a detailed mechanical analysis based on microconstituents is, for practical purposes, out of reach. Consequently, the preferred approach to the mechanical behavior of these materials is based on setting up of constitutive equations that homogenize the behavior while capturing their main microstructural features. This work presents a simple macroscopic model for fiber-reinforced materials with deformable matrices, especially suited to many biological structural tissues. The constitutive equation is derived by imposing equivalence between the virtual works of both the fiber-reinforced and the equivalent continuum media, showing that it is independent of the control volume used for such equivalence. The model is particularized to incompressible materials, and an extension to orthotropic biological fibers is shown. Numerical simulations of uniaxial tests on silk fibers demonstrate the model's ability to capture the progressive alignment of the microconstituents under large deformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.