Abstract

Based on the Darwin-Pecknold method considering the biaxial behavior of concrete, a two-dimensional constitutive model for engineered cementitious composites (ECC) is developed, taking into account the nonlinear mechanical behavior and the variation of compressive strength under biaxial compression. A nonlinear stress-equivalent uniaxial strain relationship is established after introducing the equivalent uniaxial strain in two orthotropic directions caused by biaxial loading to account for the biaxial nonlinear behavior of ECC. A biaxial strength envelope is used to determine the compressive strengths of the two directions. An explicit numerical algorithm of the model is derived, and user-defined material subroutine UMAT containing the numerical algorithm is coded and implemented in finite element procedure ABAQUS v6.14. The efficiency of the proposed model is validated through numerical simulations of two sets of ECC specimens with different mix proportions under biaxial compression loading at various biaxial stress ratios. The stress-strain curves and the compressive strengths in the major compressive stress direction obtained by numerical simulations are in a good agreement with the experimental results. It is shown that the proposed constitutive model can effectively predict the biaxial nonlinear mechanical behavior and the failure strengths of ECC under biaxial compression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.