Abstract
Methylation of CpG dinucleotides is a predominant modification of genomic DNA in many species, especially in vertebrates. This modification, generally associated with transcriptional repression, is rapidly and globally lost during mammalian pre-implantation development. This loss of methylation is gradually reversed during subsequent stages of development. Here we show that the amphibian Xenopus laevis maintains high levels of DNA methylation during early embryonic development. The methylation status of specific loci is independent of the temporal expression profile. The observations have profound implications for the regulation of early embryonic gene regulation and genome function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.