Abstract

Certain heat shock proteins are regulated by steroid hormones and are associated with oestrogen receptor function in reproductive tissues, indicating that these proteins have a role during implantation, decidualization and placentation. In the present study, the expression of hsp25, hsp70 and oestrogen receptor alpha were examined by immunohistochemistry in oviducts from rats during neonatal development, the oestrous cycle and during early pregnancy. Oestrogen receptor alpha was the first protein observed in the neonatal oviduct, and its expression preceded that of hsp70 and hsp25. Although these heat shock proteins have been associated with the oestrogen receptor, this study showed that during early development of the oviduct, the receptor protein was not associated with the concomitant expression of hsp25 and hsp70. However, these heat shock proteins were expressed when oviductal cells became differentiated. In the adult oviduct, hsp70 was more abundant than hsp25, moreover, there were no significant modifications in expression of hsp25 during the oestrous cycle. In contrast, the expression of hsp70 was significantly higher in epithelial cells during dioestrus, when the maximum amount of oestrogen receptor alpha was also observed. Therefore, the present study shows that hsp70, but not hsp25, is an oviductal protein modulated by the oestrous cycle and that it is a protein marker for specific phases of the oestrous cycle. In addition, hsp70 was more responsive to the hormonal changes in the infundibulum and ampullar regions of the oviduct. During early pregnancy, hsp25 expression was downregulated (unlike in the endometrium), whereas hsp70 was relatively abundant in the oviduct. hsp70 was observed in all functional segments of the oviduct during pregnancy, indicating that in the oviduct, this protein is modulated by oestrogens and progesterone and possibly by other pregnancy-related hormones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.