Abstract

BackgroundThe sesquiterpene, (E)-β-farnesene (EBF), is the principal component of the alarm pheromone of many aphid species. Released when aphids are attacked by enemies, EBF leads aphids to undertake predator avoidance behaviors and to produce more winged offspring that can leave the plant. Many plants also release EBF as a volatile, and so it has been proposed that this compound could act to defend plants against aphid infestation by 1) deterring aphids from settling, 2) reducing aphid performance due to frequent interruption of feeding and 3) inducing the production of more winged offspring. Here we tested the costs and benefits of EBF as a defense against the green peach aphid, Myzus persicae, using transgenic Arabidopsis thaliana lines engineered to continuously emit EBF.ResultsNo metabolic costs of EBF synthesis could be detected in these plants as they showed no differences in growth or seed production from wild-type controls under two fertilizer regimes. Likewise, no evidence was found for the ability of EBF to directly defend the plant against aphids. EBF emission did not significantly repel winged or wingless morphs from settling on plants. Nor did EBF reduce aphid performance, measured as reproduction, or lead to an increase in the proportion of winged offspring.ConclusionsThe lack of any defensive effect of EBF in this study might be due to the fact that natural enemy attack on individual aphids leads to a pulsed emission, but the transgenic lines tested continuously produce EBF to which aphids may become habituated. Thus our results provide no support for the hypothesis that plant emission of the aphid alarm pheromone EBF is a direct defense against aphids. However, there is scattered evidence elsewhere in the literature suggesting that EBF emission might serve as an indirect defense by attracting aphid predators.

Highlights

  • The sesquiterpene, (E)-b-farnesene (EBF), is the principal component of the alarm pheromone of many aphid species

  • The aphid alarm pheromone is used as a direct defense against natural enemies

  • The aphid alarm pheromone with its principal component EBF helps aphids to escape from enemy attack in multiple ways

Read more

Summary

Introduction

The sesquiterpene, (E)-b-farnesene (EBF), is the principal component of the alarm pheromone of many aphid species. Released when aphids are attacked by enemies, EBF leads aphids to undertake predator avoidance behaviors and to produce more winged offspring that can leave the plant. One plant-produced sesquiterpene, (E)-b-farnesene (EBF), has been considered as a potential defense against aphids since this substance is the most common constituent of the aphid alarm pheromone [7,8,9,10,11,12]. Released when aphids are attacked by natural enemies and perceived with the rhinaria of the aphid antenna, EBF leads to predator avoidance behaviors, such as dropping off the plant or walking away [13,14,15]. The aphid alarm pheromone with its principal component EBF helps aphids to escape from enemy attack in multiple ways

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.