Abstract

This paper is concerned with the constitutive modeling of the temperature history dependent behavior of metallic materials under uniaxial and nonproportional cyclic loadings. In the study, a class of kinematic hardening rules characterized by a decomposition of the total kinematic hardening variable is discussed. A new nonproportionality is defined. In order to consider the influence of complex cyclic loading and temperature histories on materials behavior, an apparent isotropic deformation resistance parameter Qasm is proposed and the evolution equations of the isotropic deformation resistance Q are offered to correlate the memory effect of previous loading history on material behavior. The proposed model is applied to the description of complex cyclic deformation behavior of 1Cr18Ni9Ti stainless steel, and this model gives good results for the prediction of complex tests under complex loading history and at stepwise temperature changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call