Abstract

Although the contractile function of the heart is universally conserved, the organ itself varies in structure across species. This variation includes the number of ventricular chambers (one, two, or an incompletely divided chamber), the structure of the myocardial wall (compact or trabeculated), and the proliferative capacity of the resident cardiomyocytes. Whereas zebrafish are capable of comparatively high rates of constitutive cardiomyocyte proliferation, humans and rodents are not. However, for most species, the capacity to generate new cardiomyocytes under homeostatic conditions remains unclear. Here, we investigate cardiomyocyte proliferation in the lizard Eublepharis macularius, the leopard gecko. As for other lizards, the leopard gecko heart has a partially septated ventricular lumen with a trabeculated myocardial wall. To test our hypothesis that leopard gecko cardiomyocytes routinely proliferate, we performed 5-bromo-2'-deoxyuridine incorporation and immunostained for the mitotic marker phosphorylated histone H3 (pHH3) and the DNA synthesis phase (S phase) marker proliferating cell nuclear antigen (PCNA). Using double immunofluorescence, we co-localized pHH3 or PCNA with the cardiomyocyte marker myosin heavy chain (MHC). We found that ~0.5% of cardiomyocytes were mitotically active (pHH3+/MHC+), while ~10% were in S phase (PCNA+/MHC+). We also determined that cell cycling by gecko cardiomyocytes is not impacted by caudal autotomy (tail loss), a dramatic form of self-amputation. Finally, we show that populations of cardiac cells are slow cycling. Overall, our findings provide predictive evidence that geckos may be capable of spontaneous cardiac self-repair and regeneration following a direct injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.