Abstract

AbstractAberrant nuclear factor κB (NF-κB) signaling has been found to be of particular importance in diffuse, large B-cell lymphoma (DLBCL) cell survival and proliferation. Although the canonical NF-κB signaling pathway has been studied in some detail, activation of the alternative NF-κB pathway in DLBCL is not well characterized. Important insights into the regulation of the alternative NF-κB pathway in B lymphocytes has recently revealed the regulatory importance of the survival kinase NIK (NF-κB–inducing kinase) in genetically engineered murine models. Our studies demonstrate that both the canonical and alternative NF-κB pathways are constitutively activated in DLBCL. We also demonstrate that NIK kinase aberrantly accumulates in DLBCL cells due to constitutive activation of B-cell activation factor (BAFF)–R (BR3) through interaction with autochthonous B-lymphocyte stimulator (BLyS) ligand in DLBCL cells. Activation of BR3 in DLBCL induces recruitment and degradation of tumor necrosis factor receptor-associated factor 3, which results in NIK kinase accumulation, IκBα phosphorylation, and NF-κB p100 processing, thereby resulting in continuous activation of both NF-κB pathways in DLBCL cells, leading to autonomous lymphoma cell growth and survival. These results further elucidate mechanisms involved in abnormal NF-κB activation in DLBCL, and should contribute to better future therapeutic approaches for patients with DLBCL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.