Abstract

Carbon nanoscrolls (CNSs) are a class of graphene-based nanoscale materials with great potential for applications in nanotechnology and bioengineering. Fundamental description, understanding and regulation of these materials may ultimately lead to a new generation of integrated systems that utilize their unique properties. A particularly interesting property of a CNS is that there exists a stable equilibrium core size which can be uniquely determined from the basal graphene length, the interlayer spacing, the interaction energy between layers, the bending stiffness of graphene, as well as the difference between the pressure inside the core of the CNS and that on its outer surface. Here we investigate the strongly nonlinear constitutive behaviour of a CNS under pressure, focusing on its deformation, stability and biaxial modulus in response to its inner and external pressures. Our study suggests pressure sensitive applications of CNSs such as nanopumps and nanofilters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.