Abstract
The constitutive behavior of a rare-earth magnesium alloy ZEK100 rolled sheet is studied at room temperature over a wide range of strain rates. This alloy displays a weakened basal texture compared to conventional AZ31B sheet which leads to increased ductility; however, a strong orientation dependency persists. An interesting feature of the ZEK100 behavior is twinning at first yield under transverse direction (TD) tensile loading that is not seen in AZ31B. The subsequent work hardening behavior is shown to be stronger in the TD when compared to the rolling and 45 deg directions. One particularly striking feature of this alloy is a significant dependency of the strain rate sensitivity on orientation. The yield strength under compressive loading in all directions and under tensile loading in the TD direction is controlled by twinning and is rate insensitive. In contrast, the yield strength under rolling direction tensile loading is controlled by non-basal slip and is strongly rate sensitive. The cause of the in-plane anisotropy in terms of both strength and strain rate sensitivity is attributed to the initial crystallographic texture and operative deformation mechanisms as confirmed by measurements of deformed texture. Rate-sensitive constitutive fits are provided of the tensile stress–strain curves to the Zerilli–Armstrong[1] hcp material model and of the compressive response to a new constitutive equation due to Kurukuri et al.[2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.