Abstract

AbstractHot‐work tool steel H11 is extensively applied in extrusion industries as extrusion tools. The understanding of its mechanical properties and damage evolution as well as failure is crucial for its implementation. In this paper, a finite element (FE) model employing Chaboche unified constitutive model and ductile damage rule is proposed to simulate the mechanical responses of H11 subjected to low‐cycle fatigue (LCF). Accumulated inelastic hysteresis energy is adopted to demonstrate the impact on damage initiation and evolution rules. A series of tension and LCF experiments were conducted to investigate H11's mechanical properties and its deterioration processes. In addition, to deeply understand the deformation and damage mechanism, scanning electron microscope (SEM) investigations were performed on the fracture section of gauge‐length part of the specimen after failure. Furthermore, the parameters in both constitutive model and damage rule are identified based on experimental data. The comparison of the hysteresis loop of the first cycle and stable cycle with different strain amplitudes demonstrates that the Chaboche constitutive model provides high precision to predict the evolution of mechanical properties. Based on the reliable achieved constitutive model, LCF behaviour prediction with damage rule was executed successfully using FE model and gains a good agreement with the experiments. It is believed that the proposed FE method lays the foundation of structure analysis and rapid design optimization in further applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.