Abstract
The signal transduction mechanisms generating pathological fibrosis are almost wholly unknown. Endothelin-1 (ET-1), which is up-regulated during tissue repair and fibrosis, induces lung fibroblasts to produce and contract extracellular matrix. Lung fibroblasts isolated from scleroderma patients with chronic pulmonary fibrosis produce elevated levels of ET-1, which contribute to the persistent fibrotic phenotype of these cells. Transforming growth factor beta (TGF-beta) induces fibroblasts to produce and contract matrix. In this report, we show that TGF-beta induces ET-1 in normal and fibrotic lung fibroblasts in a Smad-independent ALK5/c-Jun N-terminal kinase (JNK)/Ap-1-dependent fashion. ET-1 induces JNK through TAK1. Fibrotic lung fibroblasts display constitutive JNK activation, which was reduced by the dual ETA/ETB receptor inhibitor, bosentan, providing evidence of an autocrine endothelin loop. Thus, ET-1 and TGF-beta are likely to cooperate in the pathogenesis of pulmonary fibrosis. As elevated JNK activation in fibrotic lung fibroblasts contributes to the persistence of the myofibroblast phenotype in pulmonary fibrosis by promoting an autocrine ET-1 loop, targeting the ETA and ETB receptors or constitutive JNK activation by fibrotic lung fibroblasts is likely to be of benefit in combating chronic pulmonary fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.