Abstract

Recently the authors have shown that the versatility of the reconfigurable mesh can be exploited to devise 0(1) time algorithms for a number of important computational tasks relevant to image processing, computer graphics, and computer vision. Specifically, we have shown that if one or two n-vertex (convex) polygons are pretiled, one vertex per processor, onto a reconfigurable mesh of size sqrt n X sqrt n, then a number of geometric problems can be solved in 0(1) time. These include testing an arbitrary polygon for convexity, the point location problem, the supporting lines problem, the stabbing problem, constructing the common tangents of two separable convex polygons, deciding whether two convex polygons intersect, and computing the smallest distance between the boundaries of two convex polygons. The novelty of these algorithms is that the problems are solved in the dense case. The purpose of this paper is to add to the list of problems that can be solved in 0(1) time in the dense case. The problems that we address are: determining the minimum area corner triangle for a convex polygon, determining the k-maximal vertices of a restricted class of convex polygons, updating the convex hull of a convex polygon in the presence of a set of query points, and determining a point that belongs to exactly one of two given convex polygons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call