Abstract

We present a theory characterizing the phases emerging as a consequence of continuous symmetry-breaking in quantum and classical systems. In symmetry-breaking phases, dynamics is restricted due to the existence of a set of conserved charges derived from the order parameter of the phase transition. Their expectation values are determined by the privileged direction appearing in the ordered phase as a consequence of symmetry breaking, and thus they can be used to determine whether this direction is well defined or has quantum fluctuations. Our theory is numerically exemplified via the two-dimensional limit of the vibron model, a fully connected system invariant under a rotation operator which generates the continuous symmetry-breaking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.