Abstract

Estimates for the rate of convergence in ergodic theorems are necessarily spectral. We find the equivalence constants relating the polynomial rate of convergence in von Neumann’s mean ergodic theorem with continuous time and the polynomial singularity at the origin of the spectral measure of the function averaged over the corresponding dynamical system. We also estimate the same rate of convergence with respect to the decrease rate of the correlation function. All results of this article have obvious exact analogs for the stochastic processes stationary in the wide sense.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.