Abstract
Secure multi-party computation MPC allows several mutually distrustful parties to securely compute a joint function of their inputs and exists in two main variants: In synchronous MPC parties are connected by a synchronous network with a global clock, and protocols proceed in rounds with strong delivery guarantees, whereas asynchronous MPC protocols can be deployed even in networks that deliver messages in an arbitrary order and impose arbitrary delays on them. The two models--synchronous and asynchronous--have to a large extent developed in parallel with results on both feasibility and asymptotic efficiency improvements in either track. The most notable gap in this parallel development is with respect to round complexity. In particular, although under standard assumptions on a synchronous communication network availability of secure channels and broadcast, synchronous MPC protocols with exact constant rounds have been constructed, to the best of our knowledge, thus far no constant-round asynchronous MPC protocols based on standard assumptions are known, with the best protocols requiring a number of rounds that is linear in the multiplicative depth of the arithmetic circuit computing the desired function. In this work we close this gap by providing the first constant-round asynchronous MPC protocol that is optimally resilient i.e., it tolerates upi¾?to $$t<n/3$$ corrupted parties, adaptively secure, and makes black-box use of a pseudo-random function. It works under the standard network assumptions for protocols in the asynchronous MPC setting, namely, a complete network of point-to-point secure asynchronous channels with eventual delivery and asynchronous Byzantine agreement aka consensus. We provide formal definitions of these primitives and a proof of security in the Universal Composability framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.