Abstract

We propose two approximation algorithms for identifying communities in dynamic social networks. Communities are intuitively characterized as unusually densely knit subsets of a social network. This notion becomes more problematic if the social interactions change over time. Aggregating social networks over time can radically misrepresent the existing and changing community structure. Recently, we have proposed an optimization-based framework for modeling dynamic community structure. Also, we have proposed an algorithm for finding such structure based on maximum weight bipartite matching. In this paper, we analyze its performance guarantee for a special case where all actors can be observed at all times. In such instances, we show that the algorithm is a small constant factor approximation of the optimum. We use a similar idea to design an approximation algorithm for the general case where some individuals are possibly unobserved at times, and to show that the approximation factor increases twofold but remains a constant regardless of the input size. This is the first algorithm for inferring communities in dynamic networks with a provable approximation guarantee. We demonstrate the general algorithm on real data sets. The results confirm the efficiency and effectiveness of the algorithm in identifying dynamic communities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.