Abstract

When an inductive power transfer (IPT) system conducts wireless charging for electric cars, the coupling coefficient between the coils is easily affected by fluctuations in the external environment. With frequent changes in the battery load impedance, it is difficult for the IPT system to achieve constant-voltage and constant-current (CVCC) controls. A CVCC control method is proposed for the IPT system that has a double-sided LCC compensation structure based on full-bridge synchronous rectification. The proposed method achieved good dynamic stability and was able to effectively switch between the output current and voltage of the system by adjusting only the duty cycle of the switch on the secondary side of the rectification bridge. As a result, the system efficiency was improved. The output characteristics of the double-sided LCC compensation structure was derived and the conduction condition with zero voltage was analyzed by using four switches through two conduction time series of the rectifier circuit. Then, the output voltage of the synchronized rectifier was derived. The hardware implementation of the full-bridge controllable rectifier was described in detail. Finally, a MATLAB/Simulink 2018a simulation model was developed and applied to an 11 kW prototype to analyze and validate the design. The results showed that the designed system had good CVCC output characteristics and could maintain constant output under certain coupling offsets. Compared with semi synchronous rectification methods, the proposed method had a higher efficiency, which was 95.6% at the rated load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call