Abstract

We propose a novel three-dimensional (3D)-convolution method, cv3dconv, for detecting spatiotemporal features from videos. It reduces the number of sum-of-products of 3D convolution by thousands of times by assuming the constant moving velocity of the camera. We observed that a specific class of video sequences, such as those captured by an in-vehicle camera, can be well approximated with piece-wise linear movements of 2D features in the temporal dimension. Our principal finding is that the 3D kernel, represented by the constant-velocity, can be decomposed into a convolution of a 2D kernel representing the shapes and a 3D kernel representing the velocity. We derived the efficient recursive algorithm for this class of 3D convolution which is exceptionally suited for sparse data, and this parameterized decomposed representation imposes a structured regularization along the temporal direction. We experimentally verified the validity of our approximation using a controlled dataset, and we also showed the effectiveness of cv3dconv for the visual odometry estimation task using real event camera data captured in urban road scene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.