Abstract

Target Set Selection, which is a prominent NP-hard problem occurring in social network analysis and distributed computing, is notoriously hard both in terms of achieving useful polynomial-time approximation as well as fixed-parameter algorithms. Given an undirected graph, the task is to select a minimum number of vertices into a such that all other vertices will become active in the course of a dynamic process (which may go through several activation rounds). A vertex, equipped with a threshold value t, becomes active once at least t of its neighbors are active; initially, only the target set vertices are active. We contribute further insights into the existence of islands of tractability for Target Set Selection by spotting new parameterizations characterizing some sparse graphs as well as some cliquish graphs and developing corresponding fixed-parameter tractability and (parameterized) hardness results. In particular, we demonstrate that upper-bounding the thresholds by a constant may significantly alleviate the search for efficiently solvable, but still meaningful special cases of Target Set Selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.