Abstract

This paper discusses inferential approaches for the problem of constant-stress accelerated life testing when the failure data are progressive type-I interval censored. Both frequentist and Bayesian estimations are carried out under the assumption that the log-normal location parameter is nonconstant and follows a log-linear life-stress model. The confidence intervals of unknown parameters are also constructed based on asymptotic theory and Bayesian techniques. An analysis of a real data set is combined with a Monte Carlo simulation to provide a thorough assessment of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.