Abstract

We study the constant stress and pressure rheology of dense hard-sphere colloidal suspensions using Brownian dynamics simulation. Expressing the flow behavior in terms of the friction coefficient-the ratio of shear to normal stress-reveals a shear arrest point from the collapse of the rheological data in the non-Brownian limit. The flow curves agree quantitatively (when scaled) with the experiments of Boyer et al. [Phys. Rev. Lett. 107, 188301 (2011)]. Near suspension arrest, both the shear and the incremental normal viscosities display a universal power law divergence. This work shows the important role of jamming on the arrest of colloidal suspensions and illustrates the care needed when conducting and analyzing experiments and simulations near the flow-arrest transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call