Abstract

Splicing generates mature transcripts from genes in pieces in eukaryotic cells. Overwhelming evidence has accumulated that alternative routes in splicing are possible for most human and mammalian genes, thereby allowing formation of different transcripts from one gene. No function has been assigned to the majority of identified alternative splice forms, and it has been assumed that they compose inert or tolerated waste from aberrant or noisy splicing. Here we demonstrate that five human transcription units (WT1, NOD2, GNAS, RABL2A, RABL2B) have constant splice-isoform ratios in genetically diverse lymphoblastoid cell lines independent of the type of alternative splicing (exon skipping, alternative donor/acceptor, tandem splice sites) and gene expression level. Even splice events that create premature stop codons and potentially trigger nonsense-mediated mRNA decay are found at constant fractions. The analyzed alternative splicing events were qualitatively but not quantitatively conserved in corresponding chimpanzee cell lines. Additionally, subtle splicing at tandem acceptor splice sites (GNAS, RABL2A/B) was highly constrained and strongly depends on the upstream donor sequence content. These results also demonstrate that unusual and unproductive splice variants are produced in a regulated manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.