Abstract
Predicting the force exerted on an object as it penetrates a granular medium is of interest in engineering, locomotive, and geotechnical applications. Current models of granular drag, however, vary widely in applicability and parameterization, and the physical origin of the granular resistive force itself is a subject of debate. Here we perform constant speed penetration experiments, combined with calibrated, large-scale molecular dynamics simulations, at velocities up to 2 m/s to test the effect of impact velocity on the depth dependent ‘hydrostatic’ drag force. We discover that the evolution of the granular flow field around an intruder regulates the presence of depth dependent drag forces. In addition, we find that the observed linear depth dependence is commensurate with the mass of flowing grains. These results suggest that, as the impact speed increases beyond the quasistatic regime, the depth dependent drag term becomes intertwined with inertial effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.