Abstract
We study a nonlinear, nonhomogeneous elliptic equation with an asymmetric reaction term depending on a positive parameter, coupled with Robin boundary conditions. Under appropriate hypotheses on both the leading differential operator and the reaction, we prove that, if the parameter is small enough, the problem admits at least four nontrivial solutions: two of such solutions are positive, one is negative, and one is sign-changing. Our approach is variational, based on critical point theory, Morse theory, and truncation techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Journal of Qualitative Theory of Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.