Abstract

The use of radioisotope power systems (RPSs) for nuclear-enabled National Aeronautics and Space Administration (NASA) missions is made possible through a long-standing arrangement between the Department of Energy (DOE) and NASA. The requirements for the power system come from NASA, but DOE performs the procurement, fueling, testing, and delivery. A challenge has been interplay between the schedule for RPS availability from DOE versus the schedule for competitively selected missions. By mutual agreement, the actual operations to procure an RPS and prepare it for fueling have always been delayed until the final selection of a mission. The timeline for a New Frontiers–class mission leaves approximately 5 to 6 years from the time of final mission selection to the actual launch date. The number of RPSs used for a New Frontiers–class mission can be one to three units. If one or two units are needed, the timeline from the decision point to the launch date is a challenge, but it is achievable. The activities taking place include manufacturing the power system, producing the fuel, and performing the assembly/testing and delivery operations. If the mission selected requires three RPSs, the logistics of accomplishing all activities during the 5–6 years is problematic. The challenge involves obtaining the necessary resources for plutonium production, heat source production, and assembly/testing operations. Typically, the time between RPS-enabled missions requires staffing reduction down to 65%–75% of peak staffing levels to reduce costs. Coupling the ~2 year duration needed for hiring, training, and obtaining the appropriate security clearances for the required staff with the requirement for the RPS to arrive at Kennedy Space Center 6 months before the launch erodes much of the 5–6 years available to comfortably support the use of three RPSs. To provide better support for NASA RPS missions, a different approach for the production of heat sources was devised—constant rate production. This involves a higher level of base capability at DOE national laboratories to provide a stabilized workforce. This will enable 10–15 heat sources to be produced annually and placed into a stable intermediate form to enable storage for up to several years leading to quick production of general purpose heat source modules when a mission is selected. The upfront production of 238Pu is maintained so material is constantly in the pipeline. Production of key specialized components is also maintained using this model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call