Abstract

It is shown that the dissipative chaotic dynamics of a charged particle in the field of a wave packet with an arbitrary but finite number of harmonics can be reliably suppressed by judiciously varying the constant phase of the main harmonic, ϕ0, while keeping null the corresponding constant phases of the remaining harmonics. The dependence of the chaotic threshold on the wave packet parameters is predicted theoretically (Melnikov method) and confirmed numerically (Lyapunov exponents). In particular, it is shown that ϕ0 is effective at suppressing the chaotic behavior existing when ϕ0 = 0 over a wide range of values of the wave packet width, while the remaining parameters are kept constant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call