Abstract

The notion of Nonlocal Mean Curvature (NMC) appears recently in the mathematics literature. It is an extrinsic geometric quantity that is invariant under global reparameterization of a surface and provide a natural extension of the classical mean curvature. We describe some properties of the NMC and the quasilinear differential operators that are involved when it acts on graphs. We also survey recent results on surfaces having constant NMC and describe their intimate link with some problems arising in the study of overdetermined boundary value problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.