Abstract

We prove that a spacelike surface in L 3 with nonzero constant mean curvature and foliated by pieces of circles in spacelike planes is a surface of revolution. When the planes containing the circles are timelike or null, examples of nonrotational constant mean curvature surfaces constructed by circles are presented. Finally, we prove that a nonzero constant mean curvature spacelike surface foliated by pieces of circles in parallel planes is a surface of revolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.