Abstract
A three-parameter constant-gain recursive filter is augmented by a residual-dependent frame time algorithm that automatically increases sampling rates when a target maneuvers. Computer simulations show that tracking performance is essentially independent of the particular target trajectory. It is found that radial distance errors remain effectively constant over different trajectories. It is the number of observations dictated by the adaptive frame time algorithm that is trajectory-dependent. The filter equations along with the frame time adjustment algorithm are first described, and a comparison made with a similar procedure. Examples given use the nonlinear observations generated by a passive sensor system.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.