Abstract
Conventional techniques to achieve a constant-g/sub m/ rail-to-rail complementary N-P differential input stage require complex additional circuitry. In addition, the frequency response and common-mode rejection ratio (CMRR) are degraded. An economical but efficient design technique to overcome these problems is proposed. The proposed technique strategically overlaps the transition regions of the tail currents for the n- and p-pairs to achieve constant overall transconductance. Experimental results demonstrate that g/sub m/ variation can be restricted to within /spl plusmn/4% with improved CMRR and frequency response.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.