Abstract
A non-optical shear-force-based detection scheme for accurately controlling the tip-to-sample distance in scanning electrochemical microscopy (SECM) is presented. With this approach, the detection of the shear force is accomplished by mechanically attaching a set of two piezoelectric plates to the scanning probe. One of the plates is used to excite the SECM tip causing it to resonate, and the other acts as a piezoelectric detector of the amplitude of the tip oscillation. Increasing shear forces in close proximity to the sample surface lead to a damping of the vibration amplitude and a phase shift, effects that are registered by connecting the detecting piezoelectric plate to a dual-phase analogue lock-in amplifier. The shear force and hence distance-dependent signal of the lock-in amplifier is used to establish an efficient, computer-controlled closed feedback loop enabling SECM imaging in a constant-distance mode of operation. The details of the SECM setup with an integrated piezoelectric shear-force distance control are described, and approach curves are shown. The performance of the constant-distance mode SECM with a non-optical detection of shear forces is illustrated by imaging simultaneously the topography and conductivity of an array of Pt-band microelectrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.