Abstract

The visual system integrates discrete but aligned local stimuli to form percept of global contours. Previous experiments using "snake" contours showed that contour integration was mainly present in foveal vision but absent or greatly weakened in peripheral vision. In this study, we demonstrated that, for contour stimuli such as circles and ellipses, which bore good Gestalt properties, contour integration for shape detection and discrimination was nearly constant from the fovea to up to 35 degrees visual periphery! Contour integration was impaired by local orientation and position jitters of contour elements, indicating that the same local contour linking mechanisms revealed with snake contour stimuli also played critical roles in integration of our good Gestalt stimuli. Contour integration was also unaffected by global position jittering up to 20% of the contour size and by dramatic shape jittering, which excluded non-contour integration processes such as detection of various local cues and template matching as alternative mechanisms for uncompromised peripheral perception of good Gestalt stimuli. Peripheral contour integration also presented an interesting upper-lower visual field symmetry after asymmetries of contrast sensitivity and shape discrimination were discounted. The constant peripheral performance might benefit from easy detection of good Gestalt stimuli, which popped out from background noise, from a boost of local contour linking by top-down influences and/or from multielement contour linking by long-range interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call