Abstract

The sphere packing bound, in the form given by Shannon, Gallager, and Berlekamp, was recently extended to classical-quantum channels, and it was shown that this creates a natural setting for combining probabilistic approaches with some combinatorial ones such as the Lovász theta function. In this paper, we extend the study to the case of constant-composition codes. We first extend the sphere packing bound for classical-quantum channels to this case, and we then show that the obtained result is related to a variation of the Lovász theta function studied by Marton. We then propose a further extension to the case of varying channels and codewords with a constant conditional composition given a particular sequence. This extension is finally applied to auxiliary channels to deduce a bound, which is useful in the low rate region and which can be interpreted as an extension of the Elias bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.