Abstract
In this paper, we consider the dividend problem in a two-state Markov-modulated dual risk model, in which the gain arrivals, gain sizes and expenses are influenced by a Markov process. A system of integro-differential equations for the expected value of the discounted dividends until ruin is derived. In the case of exponential gain sizes, the equations are solved and the best barrier is obtained via numerical example. Finally, using numerical example, we compare the best barrier and the expected discounted dividends in the two-state Markov-modulated dual risk model with those in an associated averaged compound Poisson risk model. Numerical results suggest that one could use the results of the associated averaged compound Poisson risk model to approximate those for the two-state Markov-modulated dual risk model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Mathematicae Applicatae Sinica, English Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.