Abstract
We investigate p-harmonic maps, p ≥ 2, from a complete non-compact manifold into a non-positively curved target. First, we establish a uniqueness result for the p-harmonic representative in the homotopy class of a constant map. Next, we derive a Caccioppoli inequality for the energy density of a p-harmonic map and we prove a companion Liouville type theorem, provided the domain manifold supports a Sobolev–Poincare inequality. Finally, we obtain energy estimates for a p-harmonic map converging, with a certain speed, to a given point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.